D AlGI sﬂmm's uumumm ™ T
VoL e lmw EN L .-’z
P 201y

VNCLASSIFILD [ (W

nert




-
S i ki Sy ot

| g

aggyy’
‘n S EHEE) 45 : _
t | : diadaaas |

= _____ |

il M «x%ﬂ“ N

N

f mh
=

ﬁﬂp




-

L mpnaggpt e . O . -t . "

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

MATERIALS RESEARCH LABORATORIES
MELDOURNE, VICTORIA

REPORT

MRL-R-970

BURGER'S EQUATION AND SHOCK WAVES

PROPAGATI®ONG WITHIN LIQUID-GAS MIXTURES
NG

E.H. van Leeuwen

AD-A161 554

DTIC

TYE UNITED STATLS eaTONAL . z ELECTE
TECHMICAL INFCRMATION SERVICH N
i NOV 26 988 1

, 18 AUTHIRGED TO

| REPRODUGE £ND SELL THIS REPORT
[

Approved for Public Release

TN e i AT VL N L i T i w s T I
5 ﬁ’.t.%-m R VS it S
SHAERAE A

T o Py IO DT S

Y

a

e oiem V—-n-«-.w'ga-ﬂutmﬂym,mfW-"




DEPARTMENT OF DEFENCE
MATERIALS RESEARCH LABORATORIES

REPORY
MRL-R-970

BURGER'S EQUATION AND SHOCK WAVES
PROPAGATING WITHIN LIQUID~GAS MIXTURES

E.H. van Leeuwen

ABSTRACT

In this paper the time evolution of weak shock waves propagating
within a fluid-gas mixture is considered. The model uses continuum classical
theory to describe the shock waves and allows for the relative motion of the
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BURGER'S EBQUATION AND SHOCK WAVES

PROPAGATING WITHIN LIQUID-GAS MIXTURES

1. INTRODUCTION

The transient behaviour occuring when a weak shock wave propagates
into an inviscid and incompressible liquid containing small gas bubbles is
examined in the long-time regime. A semi-infinite shock-tube filled with a
liquid-gas mixture and fitted at one end with a moveable piston is
considered. when the piston is set into motion at constant velocity (u)), a
wave propagates into the liquid-gas mixture and is wodified by di.ssipatiee
processes and by non-linear effects associated with convection. The
dissipative processes involved in this analysis are viscosity and thermal
conductivity. The effects produced by these processes upon the shock-wave
propagation can be complicated since both waveform and velocity are modified
under their influence. Non-linear effects also wodify the wvave form and
become important when of comparable magnitude to the dissipative processes.
This situation will arise if viscosity and thermal conductivity cause velocity
gradients to decrease. Thus in the far field, we could expect the exact
solution to approximate a steady compression wave. Since viscous forces exert
their greatest effect in the region of the shock transition, this region will
be discussed in detail.

The linear theory (van Leeuwen (1984)) starte with the Wavier-Stokes
equations for a fluid gas mixture and expands the dependent variables using a
perturbation series. . By retaining terms to order O(e¢), the equations of
mass, momantum and enexgy can be solved for both the near field and far field
solutions. In the case of the far field, the solutions are given in
Appendix 1. These solutions can be shown to break down, when t becomes
large, amd this feature can be illustrated as follows. The width of the
shock transition zone (Thompson (1972), Gilbarg and Paolucei (1953)) is:
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for the case where the velocity, as given by A1, is of order o(vv). Hence as
t increases the size of the shock trl_l‘uition zone also increases. It is well
known however that 8§ is of order O(e ') for steady weak shock waves,

vhere € is an_,ppropriate perturbation parameter; thus when t becomes large
compared to € ©, the linearized solution yields an excessively broad shock
wave and so fails to describe the phenomena adequately.

“‘"”'rmw‘_am\ x‘,“z,v' .-
o

In the present paper a uniformly satisfactory far-field solution is
sought for a shock wave propagating into a liquid-gas mixture. Using
“stretched” coordinates and singular perturbation methods a uniformly valid
solution for t + ® can be derived. Conditions at infinity and elsewhere are
assumed uniform.

\ An analogous type of piston problem has been gstudied and solved by
Moran and Sshen (1965) (Referred subsequently to as MS), for a viscous heat-
conducting gas, using continuum theory. They found that the_linearized
Navier-Stokes equations are valid for times as large as O(€ “) mean free time
after the piston is set in motion, while at larger times the solution is
governed by Burger's equation. Crespo (1969) has considered the propagation

| of infinitesmally amall sound waves in a liquid containing gas bubblesg, taking
into account the relative motion of the bubbles and liquid. Also the
structures of shock waves in liquids containing gas bubbles have been examined
by Campbell and Pitcher (1958) and van Wijngaarden (1970). The methodologies
of MS and Crespo are closely followed in this paper. A continuum description

; of the liquid-gas mixture is given in section 2 together with simplifying

f assumptions. The method of analysis employed is to construct the exact form :

' of the Navier-Stokes (NS) equations for the conservation of mass, energy and ;

! momentum in a one-dimensional viscous unsteady flow, together with boundary '

] conditions appropriate to the piston problem. The dependent variables

‘ appearing in the NS equations are then expanded in the usual form:

(0) (1) (2)

; v'* + e* +£2* + LR XX ]
!

and terms of order O(ez) are retained, The NS equntions to order O(e) adopt a
L steady-state form in the wave frame, while to order 0(e“) the time evolution
' effects come into play.

2. BASIC EQUATIONS AND MODEL /

ﬂ The liquid host-medium is assumed to be impregnated with gas bubbles : <
of fixed size and homogeneous distribution. The liquid is also assumed ;
incompressible and inviscia. {(The gas obeys the perfect gas law.) The state
of the liquid can be described in terms of its wvelocity u,, pressure p_,
density Py and temperature T,; for the gas the corte-pondfng quantities are

u p_ and T ., The vol&-e fraction of the bubbles in an aerated liquid

Tl v ——— e s

’ P ’
wgth 2nitia1 vola-e Vo is denoted by B, so that (1-8) is the volume fraction
of the fluid. The liquid is taken to have a large heat capacity and that

N
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variations in pressure and temperature at the egquilibrium state can be
neglected, ie.,

T, -T, =0

L g
-Py=0

at equilibrium
Py

The above condition with respect to pressure implies that the radius of the
gas bubbles is small compared to the width of the shock transition zone.
Further assumptions made are (i) that the viscous forces are attributable to
gas bubble drag, (ii) that heat transfer occurs only between the gas bubbles
and surrounding liquid, and (iii) that the thermal motion of the gas bubbles
is negligible and so does not contribute to the pressure.

Both dependent and independent variables are initially expressed in
a coordinate system designated in terms of **" (ie., ¢ = (u,P,p,8,T)), but for
convenience the * is dropped from all equations.

In the nomenclature described above, the exact Navier-Stokes
equations (see Ockendon and Tayler (1983)) expressing the conservation of
mass, momentum and energy of a liquid-gas system become for a one-dimensional
unsteady flow (van Leeuwen (1984), Crespo (1969), MS) as:

(i) Equation of continuity:

3t(1-3) + ax“-”“l = 0, (2.1a)

(i1) Bmguation of continuity for the gas:

at(Bpg) + ax(qunq) = 0, (2.1b)

(iii) EBquation of momentum for the liquid-gas composition:

p‘(1-8)(3t\1 +ud ) +2 *

22x% L = 0, (2.16)

(iv) Bquation of momentum for the gas:

4np 2/3
r
3Py -5 Py(3,uy +ud u ) - 2 3 Pe¥s (=) o, (2.14)

vhere “;g - u‘ - ug.
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(v) Eguation of energy for the gas:

YqP!.
3th + ugaxp,. - —D? (3tpg + \lgaqu) -
4!pg 2/3
- 30y, - 1)01( = ) (T, -T) =0, (2.1e)

where 3 denotes partial differentiation (elsewhere the alternative notation
',' will also be used).

(vi) The equation of state for a thermally-perfect single-component,
dilute gas is given by

Pg = OgRTg' (2.1f)

| where R is the universal gas constant. The corresponding liquid equation of
state is simply Py = constant.

In the above equations v, and g, are the kinematic viscosity, and
the thermal conductivity of the fluid respectively, y_ is the ratio of
specific heats of the gas, and I is a function which 3epends on f and which
for 8 small is essentially unity {(Crespo (1969)).

~———

One approach to solving the above equations is to apply the
fundamental principle of dimensional analysis (ie., every problem must be i
expressible in terms of dimensionless variables). Firstly we seek !
dimensionless variables for the independent variables (x,t). An examination
of the physical constants appearing in (2.1) reveals shows that a constant
with dimensions of length, can be formed which renders x and t
! dimensionless., That is, we can choose without loss of generality a length

scale k = aereu'1, where fe is the radius of a gas bubble and a, = JR'I'e is the
: equilibrium spegd of sound in the liquid, such that:

X = kx, (2.2a)
t=%c¢t. (2.2b) '
e / ‘ ‘Q'
, 7
Similarly the dependent variables ¢ = (u,P,p,8,T) can also be reduced to Co

| dimensionless form, following the example of MS. ' |

The dimensionless fluid variables can be expressed asymptotically in L ;
terms of fluid variables as a power series in ¢ about the equilibrium A “

state {0,2 ,p,/8,.T,]} ie.,

; = Pal1 + u‘” + czv(” * vee),

BV TSR S S S S
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for the state variables P.p,8 and T, and as

E e % W, &
. - .3?‘\4'

; = €ag (t(” + 50(2) + see)y {2.3b)

for G. The dimensionless perturbation variable ¢ is chogen as a measure of
the piston Mach number

€ = B, (2.4)

where up is the initial piston velocity.

The linear theory fails when the diffusion thickness and the
compression wave thickness are equal, ie., when t = ¢ “, To find a uniformly
valid solution for t>e~? (ie., for the far field) where the linear theory is
no longer valid, it is necessary to introduce "stretched” coordinates for the
dimensionless independent variables, in order to take into account slow
variations in the wave form. This can be achieved by introducing the
following scale transformation for the independent variables (Su and Gardiner
(1969)):

£ =¢€"(x - At), (2.5a)

1= My, (2.5b)
where )\ is a dimensionless constant related to the velocity of propagation of
the disturbance, and is to be determined by the analysis., The quantity n is a

positive constant (also to be determined) such that time variations of any
: state variable are balanced by both non-linear and dissipative effects.

In the present nomenclature, the system of equations (2.1) can be
expressed in dimensionless variables. The scheme is illustrated by {
% considering the continuity equation (2.1a). After a change of independent :
variables from (x,t) to (x,t) equation (2.1a) becomes: i

A

HW# .:..

‘ & 'eat("s’ + 3x(1-a)uz = 0, (2.6)

L
Bwploying (2.5a) and (2.3) we obtain to order 0(e) the steady state equation: / Tk

xseags“’ + (1-se)a£ui" -0, (2.7a)

and to order 0(c?): ‘T

(1) (1)
Ozu‘

3 7_ 28,3

82 -2 8" 4 (1-8 29 (2

[ R A A -Bes
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f Be\ll SEB 0, (2.10a) {.’
which now incorporates time-evolution effects. Proceeding in a like manner .
for the remaining equations we obtain to order 0(e¢):
(v _ () _ (1) = o _
'rq ug u, pg pg o, (2.7b)
|
)y _ ., () .
aEPQ (1 Be)Aagu,' o, (2.7¢)
(1) (1) (1)
\ BEug Aag(pg +8 ') =0, (2.7d)
Integrating equation (2.7) and equating the constants of integration to zero
gives the state variables of the gas in terms of the fluid velocity:
1 (1-8.)
(1) (1) 1 o e
vy =Y, ((raa-g,), 6" X, 0). (2.8)
P where the dimensionless velocity A satisfies the relation
|
' 2 1
A% s ——————, {(2.9)
} 1 8e(1-8e)
: together with the obvious physical constraint that the fluid-gas mixture is
. ‘ not purely fluid (Be = () or gaseous (8e = 1), This velocity has a minimum
. value when 8 = 1/2.
k { 2Following a similar procedure to the above for the equation of
: order 0(€”), in which the effects of dissipation are embedded in the flow, we
"g‘ ) find that the parameter n should be chosen as unity., For this choice of n the
second order pertirbation equation, together with (2.7), can be expressed as:
. (2) (2) (1) ,(1) (2) (1) (1) (1) (1)
- 8 + + P +3 _(u +P 'u + u
Wgleg™ v 87w 27780 ) + 3 (™ 4o a4 80 e )
+9 (P(” + 8“)) =0, (2.10b) A
T g v ‘1'
(1) (1) (2) (1) (1 (1)
A8, 8 aeuz - Al Se)aeu,' + 0 Be)at“z + (1 B.)u‘ aeu‘
v j iy
:’t ] + acpéz) =0, (2.10¢) o




— . —— . .. . ) e o
H
i L b
,,- L1 (2) _ (2), _ L e
H , ag g * Q(u uy ) =0, (2.104) : r
i S
Yr
) (1 _Yo'e (2) _ (’
M-y e et - 52 B L, (2.10e)
p'T
| (2) _ (2) _ . (2)
j Pg pg '1'9 0, (2.10€)

where ¢: -g- LV (—-ﬁg)z/ 3 jg a dimensionless constant which, in terms of the

r k
momentum relaxation coefficient ay = % -\i, can be expressed as ¢ = ¢ %.
e

The constant T is the thermal relaxation coefficient.

-lp
T “"lte

3. BURGER'S EQUATION FOR THE SHOCK WAVE STRUCTURE

‘r First-order pertnr?ﬂ.ions in the state variables appearing in (2.10)
can be written in terms of ug 'y via the stead state equations (2.7).
B?u?tions (2 1 ) can then be solved to qi.v? 2’; 1n terms of
and u The partial derivatives ¥

I
o (2) _ 1 - (2)
! 3,8 B, (6, - (1-8, )3 gu ). (3.1a)
)
: (2) _ (2)
. i 3Ry G, + M1-8,)3 u, %, (3.1b)
" % (2) _ (2) %
! % 2¢0g B (8,05 + 2,uf?"). (3.1¢) i
1 4 :
of? o2 _A (1) i
g Tt 8Py (3e1a) { i
{ ; (2) _ “p' ()
‘ ' Tq Y r Bg - )u"E (3.1¢)
x «here Gy (j=1,2,3) are functions of the first order perturbation variables

(1) (1) (1)
g r “‘ .Ms 1..,

P
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(1) (1) (1) a
G, =23 8 +8€(uz g '), (3.2a) f
= (12 (1) (1),1,._ (1)
G, = (1803 u,’" + az(uz (1= )u," " + A8 )), (3.2b)
1 1 (1 (1), (1) _ (1)
Gy =3 az(¢ MRS A 8t ' ). (3.2¢)
Differentating equation (3.2e) with respect to g, and ?u?stituting for
TéZ) using (2.10f) together with (3.2), we find that “21 satisfies Burger's
equation (wWhitham (1974)):
(1) (1) (1) _ 8 (1) _
Beatut +u, aguz - i-ageuz =0 for T > 0O, (3.3)

8 u, Ty _-1)
where 6 = ($E + 7§?§T75§;T) is a dimensionless constant which behaves as a

viscosity-like term and is typically the inverse of the Reynolds number,
This term serves to prevent singularities which would occur if 8 = 0. 1In
equation (3.3) upug is a non-linear convective term and b@ Oul’gg is a
diffusive equation viscous term.

The algebraic form of the above equation confirms that the stretched
coordinates (2.5) are appropriate, since equation (3.3) retains terms
describing time-dependent flows with non-linear convection and dissipation.

4. SOLUTIONS FOR A DISCONTINUOUS SHOCK

The general initial-value problem for Burger's equation (3.3) can be
solved exactly by means of a Cole-Hopf transformation (Cole (1951), Hopf
(1950)). This transformation reduces Burger's egquation to a classical heat-
conduction equation which can then Pe_solved using integrgl-trg¥sform
methods. In a coordinate system (£,t), where £ = E and T = B_ 1, we can

introduce a function Z(E,T), which is related to u,, in such a®way that:

1 ‘ :
BT Y I (4.1a) :

2
1 .(1) 6 (1)
[E.ul - 3‘“2'2)31 (4.1b)

and this maybe achieved by noting that the integrability condition is
precisely equation (3.3) (i.e., 9~ (4.1a2)-3z(4.1b) = 0, yields equation
(3.3)). This non-linear transfor;ation eliiinates the non-linear terms
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appearing in (3.3). Integration of (4.1a) then yields:
1 -
L= exp(-'s Iui"di). (4.2)

On substituting equation (4.2) into equaticn (3.3) we find that L is a
solution of the classical heat conduction equation:

z

vio

,; z,EE- (4.3)

The initial-value problem for Burger's equation is therefore exactly soluble
and pseudo~stationary solutions can be obtained from the ansatz:

WE, ) = p(E - aT),
from which it follows that
$(®) = a(1 + expl-c(E - E ).

More explicitly, solutions of (4.3) corresponding to a discontinuous shock
wave at £ = 0 can readily be found. For the case that the initial condition
at Tt = 0 is

(1) 3 Upr E <0
\ll (E'O) '{o ’E>°’

equation (3.2) yields:

u

exp(~ "'g—) .

]
A
(=]

£(E,0) -{ _
1 ¢ £E>0,

where L is a continuous function through E = 0 and u, is an arbitrary constant
which can be set equal to unity without loss of generality. This initial
condition is the one which matches the asymptotic form of the near-field
solution (see appendix 1). The solution of (3.3) with this initial condition
can be found by taking a Laplace transform of (3.3) with respect to t. This
yields, in untransformed coordinates (Ockendon and Tayler (1983)):

u uT - -1
cxp(‘ag(f - _-;-)).HC(;L_ZO_EZ

o @5 =)+ oy , (4.5a)
-uT
exto(—2)

vaex
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v
where erfc(x) = 1-erf(x) = 1 - &— f" ~® da. The initial condition can be ?
recovered from (4.5a) if E $O0Oand T = 0. In coordinates (x,t) the fluid :
velocity (4.5a) may be expressed as r
€u At
exp(—eg(x -~ (A + o )))erfc(Jx—-Lf
(1) 2et/a
= '—' . +Sb
{x,t) v 1+ . =t 4 uoe/se) (4.5b)
erfc( )
425t7§e

This solution is similar to that of MS for shock waves propagating into a
viscous heat-conducting gas in the far field. The MS solution is recovered
if 8 > 28(y + 1), B, > 2(y + 1)7! and A » /7.

If we let T + » with E kept finite, then (4.5b) reduces to

(1) €9
(x,t) = u°(1 +1/2 exp(—e— (x - t(A +—)]) ’ (4.6)

where the following properties of error functions, erfc(0) = 1 and
erfc(- ®) = 2 have been used. This solution represents a shock wave of

u €
constant profile propagating with a velocity of A + '2%" This velocity is a
e

second-order approximation to the Rankine-Hugoniot result for the velocity of
a weak shock (cf Taylor (1910)). The first-order approximation is given by
(2.9). We further observe that if the solution (4.6) is expressed as

uo (1)

gi{x,t) = - '2—' + u, (x,t)

then g(x,t) satisfies the steady-state Burget Equation (cf MS where the $
asymptotic solution is missing a factor of /2) ie,,

L . \
qux-';g, = 0. !

xxX ‘
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S. NUMERICAL ILLUSTRATION

The forgoing solution (4.5b5 is illustrated for a shock wave
propagating intg water (p, = 10 kq-:1, a, = 1.51 x 103 ma~?',
vl = 8,57 x10 " m“s , O 4-6.1 x 10  J/(ms°Kk), T, = 300°K) containing gas
bubbles of radius rgy = 10  m. In Figure 1 and 4 we consider cases where
€= ,050res= .2, ghat is the volume fraction of gas in the fluid is either

5% or 20%. The velocity profiles are presented for both the linear (Appendix
A-1) and non-linear cases in dimensionless units.

For a small time interval the velocity gradients are very steep and
linear theory is then generally in good agreement with the non-linear
theory. This result is expected since, for t small, dissipative terms are
more important than non-linear convective terms. As t increases, the wave
propagates further into the liquid-gas mixture and the velocity gradients
diminish, leading to a broadening of the shock-wave i.e., non-linear effects
begin to dominate.

when € + 0 the linear and non-linear solutions coalesce and shock
fronts become infinitely steep; see Figures 1 and 2. Conversely,
if € increases then the two solutions diverge and the velocity gradients
diminish.

The effects of altering the viscosity-like term 6 are shown in
Figures 5 and 6. 1Increasing 0 (Figure 6) leads to a smearing of the velocity
profile, which might be expected since 6 contains terms related to momentum

and thermal relaxation. If 8 is reduced, on the other hand, then the velocity
gradient becomes very large (Figure S5).

6. DISCUSSION

The propagation of pressure waves into gas bubbles suspended within
a liquid is of some considerable interest. 1In this paper a mathematical model
is developed which investigates the evolution of a shock wave propagating
within a two-phase fluid, and proceeds with a description of how the
compression wave forms and approaches the final steady state. The model
developed is an extension of the previous linear model of van Leeuwen (1985)
and is also a generalization of the work of Moran and Shen (1966), who
considered the case of a shock wave propagating within a viscous heat-
conducting gas. The linear and non-linear solutions of the flow that have
been developed give a uniformly satisfactory description of the flow.

Important features of the present model are that the Navier-Stokes
BEquations for a liquid-gas mixture are solved using a perturbation expansion
on the dependent variables and a dilation of the independent variables. This
procedure extends the solution beyond the region where the linear solution
breaks down, Decoupling the resultant partial differential equation leads to

1

T
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Burger's equation for the velocity of the liquid. By using Laplace transform
techniques this equation can be solved in closed form.

For small values of time the non-linear solution agrees well with
the linear one, however for the far field the liquid velocity in the non-
linear case runs ahead of the linear one.
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8. APPENDIX 1

The solution of the Navier-Stokes equations for unsteady flow to
order 0(ec) has been derived for a shock wave propagating into a liquid-~gas
mixture (van Leeuwen, 1984). The dimensionless solution for large times
(i.e., the high frequency case) concomitant to (3.5b) can be written as:

u;”(x.t) - % ertc(x—-—?i'}, (a-1)
1:/8e

and for the density, pressure and temperature of the gas as:

1 (1 1 -1 -
1 p( )(x,t) = Pg )(x,t) -; Be /2 (I-Be)etfc(x At ’ (A-2)
9 26¢78,
T;”(x,t) - 0. (A-3)

The velocity of the gas is sgimply: i

(1) (1)
ug (x,t) = u, (x,t). (A-4)
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FIGURE 1 Liquid velocity profiles according to the Navier-Stokes \
equations; - - - - linear solution, ----~ non-linear solution i
€ = ,05, Bo = .,05; t = 200,400,1000,2000,3000,4000,5000. .
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FIGURE 2 Liquid wvelocity profiles according to the Navier-gStokes
equations; - -~ - - linear solution, ---- non-linear solution
€= .2, o~ .05 t = 200,400,1000,2000,3000,4000,5000,
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FIGURE 3 Liquid velocity profiles according to the Navier-Stokes
equations; - - - - linear solution, --~- non-linear solution
€ = ,05, Bo = ,2; t = 200,400,1000,2000,3000,4000,5000.
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Liquid velocity profiles according to the Navier-gStokes
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equations; - - -~ -~ linear solution, --«- non-linear solution
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FIGURE 5 Liquid wvelocity profiles according to the Navier-Stokes

equations; - - -~ - linear solution, ---- non-linear solution
€ = .05, 8° = ,05, 6+#10; t = 200,400,1000,2000,3000,4000,5000.
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equations; -~ - -~ = linear solution, -~~~ non-linear solution
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